
Racoon: Rapid Contact Tracing of Moving Objects
Using Smart Indexes

Rakan Alseghayer
Department of Computer Science, University of Pittsburgh

ralseghayer@cs.pitt.edu

Abstract—The affordable mobile sensing technologies and the
rise of spatio-temporal applications granted trajectory data and
data streaming high importance. This led to the need for
efficient data stream and trajectory—both historical and real-
time—data processing. Tremendous effort has been put in this
context, especially, optimizing index structures for certain crucial
operations, such as trajectory join and trajectory similarity, which
are used widely in many monitoring and analytic applications.
In this paper, we propose an access structure that optimizes
trajectory joins for contact tracing and avoidance applications.
Our prelim evaluation shows that our proposed spatio-temporal
index potentially can enhance the performance of contact tracing
applications that require trajectory join operations.

Index Terms—Spatio-temporal Indexes, Access Methods, In-
doors Trajectories, Data Streams.

I. INTRODUCTION

Current database systems are optimized for certain work-
loads. For example, timeseries databases (e.g., InfluxDB [1])
support efficiently timeseries workload, while data stream
management systems (e.g., Flink [2]), support analytics
over live streams. PostGIS [3] and PG-Trajectory [4] are
spatio-temporal extensions to PostgreSQL that support spatio-
temporal workloads.

Even though few spatio-temporal systems exist, and many
access structures were proposed [5]–[7], optimizing for both
temporal and spatial analytical queries is still in need. This
is due to the increased number of applications that need fast
analytics for real-time streaming of trajectory data.

In the context of COVID-19 pandemic, one crucial applica-
tion is contact tracing (e.g., [8]–[10]), that determines if two
individuals have come to close distance of each other within
a specified time period.

Contact tracing can be formalized as the detection of trajec-
tory intersections in time and space. We pose that trajectory
intersections can be efficiently implemented as trajectory
joins.

The real-time nature of applications, such as contact tracing,
that requires the processing of huge number of trajectories,
suggests the need for efficient access methods. Motivated by
that need, we propose Racoon, Rapid Contact Tracing of
Moving Objects Using Smart Indexes, built on

• A system model that supports trajectory stream process-
ing (§II); and

• In memory access structures that optimize trajectory joins
for indoors spaces (§III).

II. SYSTEM MODEL

Our system has two main actors, the moving objects and
the centralized authority. The moving objects produce data
points that form indoors trajectories. Trajectories are indexed
locally at the moving objects side, as well as streamed to the
centralized authority, which also keeps a centralized index.
The centralized authority keeps track of trajectories that are
infected (or potentially infected). Regularly, those infected
trajectories are sent to the moving objects side for querying
whether the moving object has intersected with the infected
ones. If that was the case, then the central authority asks the
moving object to send its own trajectory after the contact point,
and resend them to all moving objects.

The trajectories arrive at the centralized authority in the
form of micro-batches. As defined in our previous work [11]–
[14], a micro-batch is a group of synchronized, and same sized
trajectory data points that are streamed over a set of moving
objects defined by a timestamp. Micro-batches of trajectory
data arrive in the form of (ts, val), where ts is the timestamp,
and val is the indoors location information (i.e., <x,y> in an
indoors layout instead of <long, lat> in outdoors).

The timestamp part of the trajectory represents the temporal
aspect of the data point, and helps in pre-processing the
trajectory data points and synchronize the trajectories’ streams.

Regarding locations, indoor floors are segmented into zones
based on a 2D spatial information (i.e., <x,y> coordinates).
A location point of <x,y> is mapped to a zone using hashing.

III. SPATIO-TEMPORAL MOVING OBJECT INDEX

Our proposed spatio-temporal index for moving objects
consists of two auxiliary structures (Fig. 1). The first is a multi-
level index that serves spatial based look-ups. The second
structure is an inverted index that speeds up temporal look-
ups.

The multi-level index is based on hashing buckets and
interval trees [15], [16]. The inverted index also consists of
hashing buckets and interval trees. The rationale behind using
interval trees is the lack of perfect precision of trajectory points
in time and space. Thus, guarding the location information
with an interval of time, instead of a definite timestamp, can
help answering queries with higher precision. We construct
intervals from timestamps, and they consist of low and high
values. Those values are derived from the trajectory points’
timestamps, where the timestamp = (low + high) / 2.



σ

τ

<ts_n, (x_n, y_n)>

h_temporal(ts_n)

h_spatial(x_n, y_n)

interval tree
node

σ
τ

<ts_0, (x_0, y_0)> , ... ,

τ

Interval
trees

Interval
trees

Temporal
buckets

Temporal
buckets

Spatial
buckets

Multi-level
index

Inverted
index

Two copies of the
same pointer

Fig. 1. Insertion of a trajectory point n into the Racoon index.

Multi-level Index In the multi-level index, the first level
consists of hashing buckets based on spatial information. The
second level index consists also of hashing buckets based on
temporal information grouping (day, hour, etc.). Each temporal
bucket in the second level index points at an interval tree.
When a trajectory point arrives and an interval is formed,
an interval node is created and its pointer is inserted in the
corresponding interval tree that is pointed at by the multi-level
index.

Inverted Index The inverted index consists of temporal
buckets that are based on the same temporal information
grouping (day, hour, etc.), as in the multi-level index. Each
one of those buckets has a single interval tree that contains all
the intervals belonging to the moving object, while they have
been in the indoors environment. The nodes of the interval
tree are the same ones created for the interval trees in the
multi-level index described above.

Index Building Our proposed spatio-temporal index is lo-
cally built on the moving object as the data points (trajectory
data) are generated by its movement. Each point is used to
infer two keys, and an interval. The two keys are a spatial key
and a temporal key (denoted as σ and τ respectively in Fig. 1).
Then, an interval node is created, containing the interval, the
spatial zone (same as the key), and the anonymized moving
object ID. After creating the node, the pointer to that node is
used to insert the node into the multi-level and the inverted
indexes. The spatial key is used to determine the corresponding
spatial bucket, and the temporal key determines the second
level index bucket in order to identify the corresponding
interval tree at which the interval node will be inserted.

After inserting the pointer into the multi-level index, the
same temporal key is used to locate the inverted index tempo-
ral bucket. Then, the pointer to the node is used to insert the
same node into the corresponding interval tree.

The size of the index depends significantly on the location
sampling rate at the moving object, since each data point will
be an interval. However, data points that are fixed in the same
location can be translated into a single interval (single node).

 1

 10

 100

 1000

 10000

 100000

10
4  x

 o
pe

ra
tio

ns

Number of Operations

Naive
Index

Fig. 2. Trajectory join cost in number of operations at moving objects.

IV. MOVING OBJECT QUERY TYPES

A very popular operation that is used in many spatio-
temporal contexts is trajectory join. As mentioned above,
contact tracing is an important application of such operation.
Our proposed access structures help answering trajectory join
queries efficiently in a logarithmic time.

When a trajectory is received at the moving object to be
checked, of whether the trajectory has “intersected” with the
moving object in time and space, the trajectory data points
are used to infer spatial and temporal keys. Those keys are
used to access the first and second levels of the index to reach
the interval tree of question. Then the interval tree is searched
for the interval that the timestamp from the query trajectory is
potentially lays within. This is known as the stabbing problem
[17]. If the timestamp of the trajectory point does stab an
interval in the corresponding interval tree, then the answer is
returned as yes, contact (or intersection) occurred, otherwise
the linear scan over the query trajectory points is carried on.
In case of a yes answer, the trajectory at the moving object
side is streamed to the central authority for broadcasting.

V. EVALUATION

In our preliminary evaluation, we compared a naive ap-
proach of doing nested loop trajectory join with our pro-
posed index structure. We have used the [18]–[20] dataset
which contains 60,949 trajectories. In our experiment, we find
whether a certain trajectory has intersected with (contacted)
any other trajectory in the dataset by sending the raw trajectory
to all the moving objects. We measure the performance in
number of operations for both approaches at each moving
object (collectively). Our preliminary results show that we
have an order of magnitude gain in our performance over the
naive approach in number of operations (Fig. 2).

VI. CONCLUSIONS

We have proposed a spatio-temporal access method that
optimizes trajectory joins which can efficiently support contact
tracing monitoring systems. In our prelim evaluation, we
have found that our proposed method outperforms the naive
approach by orders of magnitude. We are further investigating
the usage of GPUs and compression techniques to optimize
query answering and the storage of trajectories. Also, we are
looking at expanding the querying capability of the system to
optimize for other kinds of queries.



ACKNOWLEDGMENT

I would like to thank my advisors Prof. Panos K. Chrysan-
this and Dr. Constantinos Costa for their valuable ideas and
feedback. Also, thanks to the members of the ADMT (Ad-
vanced Data Management Technology) lab for their support
and comments.

REFERENCES

[1] InfluxData. Influxdb. [Online]. Available: https://www.influxdata.com/
[2] A. Katsifodimos and S. Schelter, “Apache flink: Stream analytics at

scale,” in 2016 IEEE International Conference on Cloud Engineering
Workshop (IC2EW), 2016, pp. 193–193.

[3] PostGIS. Postgis. [Online]. Available: http://postgis.net/
[4] A. Kucuk, S. M. Hamdi, B. Aydin, M. A. Schuh, and R. A. Angryk,

“Pg-trajectory: A postgresql/postgis based data model for spatiotemporal
trajectories,” in 2016 IEEE International Conferences on Big Data and
Cloud Computing (BDCloud), 2016, pp. 81–88.

[5] W. G. A. Ahmed R. Mahmood, Sri Punni, “Spatio-temporal access
methods: a survey (2010 - 2017),” GeoInformatica, vol. 23, p. 1–36,
2019.

[6] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches in query
processing for moving object trajectories,” in Proceedings of the 26th
International Conference on Very Large Data Bases, 2000, p. 395–406.

[7] Z. He, C. Wu, G. Liu, Z. Zheng, and Y. Tian, “Decomposition tree:
A spatio-temporal indexing method for movement big data,” Cluster
Computing, vol. 18, p. 1481–1492, 2015.

[8] A. Gov. Covidsafe app. [Online]. Available:
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app

[9] S. Gov. Tracetogether. [Online]. Available:
https://www.gov.sg/article/help-speed-up-contact-tracing-with-
tracetogether

[10] Y. Park, Y. Choe, O. Park, and et al., “Contact tracing during coronavirus
disease outbreak, south korea, 2020,” Emerging Infectious Diseases,
vol. 26, pp. 2465–2468, 2020.

[11] R. Alseghayer, D. Petrov, P. K. Chrysanthis, M. Sharaf, and A. Labrini-
dis, “Dcs: A policy framework for the detection of correlated data
streams,” in Real-Time Business Intelligence and Analytics, 2019, pp.
191–210.

[12] D. Petrov, R. Alseghayer, M. Sharaf, P. K. Chrysanthis, and A. Labrini-
dis, “Interactive exploration of correlated time series,” in Proceedings
of the ExploreDB’17, 2017.

[13] R. Alseghayer, D. Petrov, P. K. Chrysanthis, M. Sharaf, and A. Labrini-
dis, “Detection of highly correlated live data streams,” in Proceedings
of the International Workshop on Real-Time Business Intelligence and
Analytics, 2017.

[14] R. Alseghayer, D. Petrov, and P. K. Chrysanthis, “Strategies for detection
of correlated data streams,” in Proceedings of the 5th International
Workshop on Exploratory Search in Databases and the Web, 2018.

[15] M. H. Overmars, The design of dynamic data structures, ser. Lecture
notes in Computer Assisted Diagnosis. Springer, Berlin, Heidelberg,
1983, vol. 3204.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[17] J. M. Schmidt, “Interval stabbing problems in small integer ranges,” in
Algorithms and Computation, 2009, pp. 163–172.

[18] C. Costa, X. Ge, E. McEllhenney, E. Kebler, P. K. Chrysanthis, and
D. Zeinalipour-Yazti, “Caprio v2.0: A context-aware unified indoor-
outdoor path recommendation system,” in Proceedings of the 21th IEEE
International Conference on Mobile Data Management, 2020, pp. 230–
231.

[19] C. Costa, X. Ge, and P. K. Chrysanthis, “Caprio: Graph-based integration
of indoor and outdoor data for path discovery,” in Proceedings of the
45th International Conference on Very Large Data Bases, 2019, pp.
1878–1881.

[20] ——, “Caprio: Context aware path recommendation exploiting indoor
and outdoor information,” in 2019 20th IEEE International Conference
on Mobile Data Management (MDM), 2019, pp. 431–436.


