
Strategies for Detection of Correlated Data Streams
Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis

Dept. of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
{ralseghayer,dpetrov,panos}@cs.pitt.edu

ABSTRACT
There is an increasing demand for real-time analysis of large vol-
umes of data streams that are produced at high velocity. The most
recent data needs to be processed within a specified delay target in
order for the analysis to lead to actionable result. In this paper we
present an effective solution for the analysis of such data streams
that is based upon a 3-fold approach that combines (1) incremental
sliding-window computation of aggregates, to avoid unnecessary
recomputations, (2) intelligent scheduling of computation steps and
operations, driven by a utility function within a micro-batch, and (3)
an exploration strategy that tunes the utility function. Specifically,
we propose eight strategies that explore correlated pairs of live
data streams across consecutive micro-batches. Our experimental
evaluation on a real dataset shows that some strategies are more
suitable to identifying high numbers of correlated pairs of live data
streams, already known from previous micro-batches, while others
are more suitable to identifying previously unseen pairs of live data
streams across consecutive micro-batches.

CCS CONCEPTS
• Information systems→ Personalization;

KEYWORDS
Data Streams, Data Exploration, Correlation, Search, Subsequence

ACM Reference Format:
Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis. 2018. Strategies for
Detection of Correlated Data Streams. In Proceedings of 5th International
Workshop on Exploratory Search in Databases and the Web (ExploreDB 2018).
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3214708.3214714

1 INTRODUCTION
Motivation More and more organizations (commercial, health,
government, and security) currently base their decisions on real-
time analysis of business and operational data in order to stay
competitive. Towards this, they deploy a variety of monitoring
applications to analyze large volumes of live data streams, produced
at high velocity. Data analysts explore such large volumes of data
streams, typically representing time series of rawmeasures, looking
for valuable insights and interesting events.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ExploreDB 2018 , June 15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5847-7/18/06. . . $15.00
https://doi.org/10.1145/3214708.3214714

A common method for getting a better understanding of the
observed behavior conveyed in a set of data streams is to find corre-
lations in the data streams [8]. The correlation can be also used as
a source for finding similarity measures faster [12], running thresh-
old queries [15], or reducing the size of the data, but preserving
some of its characteristics [9].
Challenges Finding correlations in data streams is a challenging
task. Current methodologies approach this challenge by employ-
ing some prediction techniques [14], Discrete Fourier Transform
approximations [2, 16], or using clustering and Markov chain mod-
eling [6]. All those approaches have their limitations, whether due
to lack of absolute precision as a result of using approximations
or predictions, or due to the usage of computationally expensive
operations. Other approaches address this challenge by indexing
the data series [3, 4, 17]. Predominantly the users are looking for
pairs of (positively or negatively) correlated data streams over a
short period of time. The high number of data streams implies an
even bigger number of pairs—precisely n∗(n−1)

2 pairs for n data
streams. The time to explore completely all pairs on one computer
may be prohibitively long. The challenge is exacerbated when the
demand is for answers in real-time and for a large set of live data
streams.
Problem Statement Clearly there is a need for algorithms that
quickly identify windows of correlated data streams. In our prior
work [13], [1], we proposed such an algorithm, called PriCe-DCS,
which detects pairs of correlated data streams within micro-batches
of data streams with specific intervals. PriCe-DCS uses the Pearson
Correlation Coefficient to correlate two windows of data streams
and is driven by a utility function (Section 2.3).

As long as the detection of correlated pairs is considered indepen-
dent across micro-batches, PriCe-DCS executes in the same fashion
within each micro-batch, identifying the highest possible number
of correlated pairs. However, there are exploration tasks that do
not consider the detection of correlated pairs across micro-batches
independent. For example, in some exploration tasks, the goal is to
to detect as many unique pairs of correlated data streams as possible
across two consecutive micro-batches, while in others, the goal is
to assure the perpetual correlation between them.

In this paper, we study eight different strategies to address the
different requirements of exploration tasks. Some of these strategies
leverage prior knowledge (i.e., exploit the information of already
detected correlated data streams in preceding micro-batches) to
steer the detection of correlated pairs of data streams to explore
more unique pairs of correlated data streams, or to exploit the
identified pairs of data streams and assure the correlation in those
pairs. This is achieved by tuning the initial values of the PriCe-DCS
utility function parameters appropriately.

https://doi.org/10.1145/3214708.3214714
https://doi.org/10.1145/3214708.3214714

ExploreDB 2018 , June 15, 2018, Houston, TX, USA Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis

Contributions In this paper we make the following contributions:

• We propose eight different strategies that our proposed
PriCe-DCS algorithm can employ when detecting constitu-
tive micro-batches: Blind, Informed, Untounched, Alternating,
X% Non-Correlated, Decaying History, Shared Stream, X%
Probing. These strategies can increase the efficiency when
detecting correlated live data streams and/or address the
different exploration requirements by exhibiting different
detection-recall, overlapping-recall, and diversity results. (Sec-
tion 3)
• We experimentally evaluate and compare the behavior of the
eight detection strategies. Our results using a real dataset
show that our PriCe-DCS with X% Probing (i.e., 1% Probing
and 5% Probing) was able to identify more diverse correlated
data streams acrossmicro-batches than the Informed strategy.
On the other hand, our PriCe-DCS with Informed strategy
was able to assure the existence of correlation in already iden-
tified correlated data streams (i.e., high overlapping-recall).
The other strategies exhibited mixed behavior. (Section 4)

2 DCS FRAMEWORK
In this section, we review ourDCS (Detection of Correlated Streams)
mode of operation, introduced in [1], its optimization objective, and
our novel algorithm PriCe-DCS that implements its objective.

2.1 System Model
Without loss of generality, we consider a (monitoring) system that
receives data from n data streams. Each data point in a data stream
is a tuple t consisting of a timestamp ts and a numeric value val
(t = (ts,val)). The timestamp captures the moment in time when
the tuple was produced.

The data is produced at high velocity. The different streams
produce the consecutive tuples at the same rate, and they are all
synchronized. However, there are techniques to determine missing
values, and to synchronize data which arrives at different rates, but
they are beyond the scope of this paper.

The real-time analytical processing is performed inmicro-batches.

Definition 2.1. A micro-batch is a group of synchronized tuple
subsequences over a set of data streams defined by a timestamp
interval I .

In the system, each micro-batch, whether of the same or different
data streams, is of the same size, i.e., contains the same number
of tuples with consecutive timestamps within the interval. The
inter-arrival time of two consecutive micro-batches specifies the
maximum computational time for processing a micro-batch.

Definition 2.2. The inter-arrival time is the delay target or dead-
line d by which the last result can be produced while analyzing a
micro-batch.

In real-time processing, ideally, the deadline d equals to the
interval (d = I) so that there is no delay gap in processing between
two consecutive micro-batches. However, it is expected to be a
bit longer due to various overheads in the system, including any
pre-processing of micro-batches.

2.2 Optimization Objective
Our DCS framework focus on analytical processing that finds cor-
related data streams in real-time, using the Pearson Correlation
Coefficient (PCC) as a correlation metric for pairs of sliding win-
dows of data streams.

Definition 2.3. Given two numeric data streams x and y of equal
lengthm, the PCC is calculated with the following formula:

corr (x ,y) =
m∑
i=1

(xi − µx) (yi − µy)

σxσy
(1)

where µx is the average (or mean) of the values of x , µy is the mean
of the values of y, σx and σy are the standard deviations of the
values of x and y, respectively.

Definition 2.4. Two sliding windows of the same rangew with
a slide of 1 are correlated when the PCC is more than a given
threshold τ (PCC ≥ τ).

Definition 2.5. A pair of data streams in a micro-batch is corre-
lated when it contains at least A correlated sliding windows with
threshold τ .

The windows, which meet the criterion, may be consecutive or
stratified over the interval defining a micro-batch.

The formalization of the algorithmic problem is as follows:

PROBLEM (Real-time Correlation Detection): Given a micro-batch
B of a set of data streams DS with an arrival interval I , perfectly
synchronized and with no missing tuples, and a deadline d , detect
the number of correlated pairs of data streams, each of which has A
correlated sliding windows, not necessary consecutive, with a PCC
threshold of τ , by the deadline d .

The optimum solution will be when the number of identified
correlated pairs in a micro-batch are equal to the actual, total num-
ber of correlated pairs. Hence, the optimization goal in DCS is to
maximize the number of identified pairs by a deadline. Formally,
the ratio of number of detected correlated pairs to the total number
of correlated pairs is close to 1 and the metric is defined as:

Detection-Recall =
identi f ied correlated pairs

Actual # correlated pairs
(2)

2.3 Base Algorithm
PriCe-DCS is a scanning algorithm that uses a utility function to
analyze the pairs of windows while reusing partial PCC computa-
tions. It analyzes the most promising pair first, which is the one
with the highest utility function value:

Pr = PCC ∗ (M/totalExp)/C (3)

where PCC is the most recently calculated Pearson Correlation
Coefficient for a pair of sliding windows that belong to the same
pair of data streams,M is the number of correlated sliding windows
found in the corresponding pair of data streams so far, totalExp is
the total number of analyzed pairs of sliding windows, andC is the
cost of analyzing a pair of sliding windows in terms of number of
computations (i.e., the number of operations needed to calculate
the sufficient statistics for a pair of sliding windows). The default
values are PCC = 1,M = 0, totalExp = 1, and C = 1.

Strategies for Detection of Correlated Data Streams ExploreDB 2018 , June 15, 2018, Houston, TX, USA

Early termination happens when the A criterion of the number
of correlated windows is reached for a pair, and pruning happens
according to the following condition:

(A − correlatedWindows) > (I − slidingWindowPosition)
where correlatedWindows are the total number of windows that are
correlated in a pair of streams according to PCC τ , and slidingWin-
dowPosition is the pair’s analysis location in the interval. Recall, I
is the interval of the data streams.

3 DETECTION STRATEGIES
In this section, we propose eight different detection strategies.
When the very first micro-batch arrives at the system, the sys-
tem has no prior knowledge about any correlated pairs of streams.
However, this is not the case after the analysis of any micro-batch
that produces a set of correlated pairs of data streams. This raises
the question of how to exploit the results of past micro-batch anal-
yses. For example, in picking the first pair in a new micro-batch
to analyze. This question has a major impact on PriCe-DCS, since
its answer can be used in the initialization of the parameters of its
utility function. In fact, the proposed strategies differ in the way
each initializes the utility function of PriCe-DCS.

Blind When the analysis of a micro-batch starts with no prior
knowledge of correlated pairs of streams, we call that a Blind
starting phase. In Blind starting phase, PriCe-DCS’s utility
function is initialized to its default values (as discussed in
Section 2.3). It is to be noted, however, that the very first
micro-batch analysis in all approaches follows the Blind ap-
proach1.

Informed Here, the utility function is initialized based on the
results of the latest micro-batch analysis. We utilize the same
parameter values of the correlated pairs used by the im-
mediately previous micro-batch. The rationale behind this
strategy is to keep analyzing closely those pairs that already
exhibited high correlation in the previous micro-batch, po-
tentially indicating an insight of interest.

Untouched Here, we focus on the pairs that were not pro-
cessed at all due to the lack of any correlated windows (i.e.,
not chosen for analysis due to their low values of Pearson
Correlation Coefficient) at the beginning of PriCe-DCS’s ex-
ecution. Specifically, we propose to jumpstart such pairs
by altering their previous number of correlated windows
(i.e., the parameter that reflects this information) to have the
value A. This will increase their priority, preventing their
starvation and giving them another chance to be analyzed
in the new micro-batch. The rationale behind this strategy
is to allow such pairs another chance, potentially identify-
ing problematic behavior, which remained undetected in the
previous micro-batch.

Alternating In this strategy, we aim to give the pairs that were
not correlated in the previous micro-batch a chance to be
explored through a hybrid round-robin fashion. We pick a
pair from those and explore it using PriCe-DCS. Then, we
pick a pair from those who were correlated, and explore it
alternately. We do this until we conclude the starting phase

1In DCS [13], [1], Blind was referred to as Cold Start whereas the other proposed
strategies here are instances of Warm Start.

(i.e., touched all the pairs at least once), and we carry on later
with PriCe-DCS according to the utility function. By doing
this, we hope to reduce the affect of starvation for those that
were not correlated in the previous micro-batch.

X% Non-Correlated Here, we try to achieve fairness of explo-
ration through jumpstarting the lowest X% pairs in prior-
ity. We pick the pair with the highest priority among those
lowest X%, and explore it. We continue until we have jump-
started all those X% pairs, and reflect that start on their
utility function. Consecutively, PriCe-DCS carries out the
exploration process naturally.

Decaying History This strategy regards the significance of
the historical correlation information of a pair differently
from recent micro-batches information. In the utility func-
tion, it alters the parameter M, which reflects the number of
correlated sliding windows found for a corresponding pair,
such that it becomes weighted. It gives the historical corre-
lation information (i.e., data from micro-batches earlier than
themost recent one) a weight, and then gives a higher weight
to the most recent correlation information. Then, the total
of both becomes the new parameter M. The goal behind this
strategy is to consider higher the most recent information
along the exploration process as opposed to older ones.

Shared Stream In Shared Streams, we have a pool of pairs that
were not correlated in the previous micro-batch. However,
each pair of those share a data stream that was part of a
correlated one in the preceding micro-batch. The idea in
this strategy is to say that if we find a data stream that
is correlated with another data stream, then it might be
correlated with a third, different stream as well. Thus, in this
strategy, we pick a pair from this group of non-correlated
pairs according to PriCe-DCS and explore it. We do this until
we start all those pairs, and then we carry on using PriCe-
DCS.

X% Probing In this strategy, we explore the first few windows
for all the pairs in a round-robin fashion. We do this to set
the utility function with actual current values instead of
artificial hand-crafted ones. After those few windows, PriCe-
DCS kicks in and continues the exploration process using
the utility function that had its parameters filled with actual
data through the probing process.

4 EXPERIMENTS AND ANALYSIS
In this section we present results from the evaluation of PriCe-DCS
with the different strategies, and we also study how each strategy
addresses different exploration requirements. For consistency, we
used the same dataset and settings in [1].

4.1 Experimental Framework
Algorithms We study the different strategies that modify PriCe-
DCS default behavior.

Testbed We implemented all the discussed strategies in C++ 11.
We ran the experiments on a computer with 2 Intel CPUs, running
at 2.66GHz, and 96GB of RAM memory. The operating system used
was CentOS 6.5 and the compiler was GCC version 4.8.2.

ExploreDB 2018 , June 15, 2018, Houston, TX, USA Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis

MetricsWe evaluated the performance of the strategies in terms of
detection-recall, overlapping-recall, and diversity. We also measure
the cost, which is used to determine the deadlines in our experi-
ments.

Detection-Recall: This is our detection optimization criterion (Eq.
2). It reflects how capable the strategy is in detecting correlated
pairs out of the total actual correlated pairs. Thus, it is a ratio of
the number of detected correlated pairs to the total number of
correlated pairs.

Overlapping-Recall: We call pairs that were detected in a given
micro-batch and also were detected in the preceding micro-batch as
an overlapping pair. In this metric, we find the ratio of the detected
overlapping pairs to the total number of overlapping pairs in a
micro-batch. Note that this metric does not apply to the very first
micro-batch.

Diversity: We measure how many new pairs (i.e., not seen as a
result in the most recent micro-batch) are detected in each micro-
batch. This is our exploration vs exploitation criterion.

Cost: This is our efficiency metric. We measured the deadline
latency as the number of operations performed to detect corre-
lated pairs of data streams. We used the number of operations as
it provides the asymptotic efficiency of the strategies compared
to one another. This does not depend on factors such as the hard-
ware characteristics and the operating system of the computer, on
which the experiments are run, nor the efficiency of the compiler.
We examined how the strategies meet deadlines and how many
correlated pairs they could detect under such a requirement.

Dataset Yahoo Finance Historical Data [5]: The dataset we have
used in our experiments consists of 318 data streams. Those reflect
the trading of 53 companies on the NYSE for the last 28 years.
This gives us a total of 50,403 different pairs to analyze. The data
granularity is a day, which includes the price of the stock of the
company at opening, the price at the end of the day (closing), the
highest price for the day, the lowest price for the day, the amount of
shares traded that day, and the adjusted close (calculated according
to the standards of the CRSP, Center for Research in Security Prices).
The length of each data stream is about 7,100 tuples. Those tuples
are divided into micro-batches.

Experiments We ran two experiments to measure the cost for all
strategies, based upon PriCe-DCS. We did it for two PCC threshold
τ ’s, 75% and 90%, and for three different values ofA, 112, 225 and 450.
The values ofA correspond to the 1/8, 1/4 and 1/2 of the micro-batch
interval. The micro-batch interval is set to 900 tuples to simulate an
inter-arrival time of 180 seconds, where each tuple is produced each
200 milliseconds. Finally, we experimented with three deadlines
corresponding to 25%, 50%, and 75% of the total operations needed
to determined all the correlated pairs in a micro-batch, i.e., achieve
total detection-recall. The experimental parameters are summarized
in Table 1. We also ran an experiment to measure the detection-
recall, overlapping-recall, and diversity for some strategies with PCC
threshold τ = 90% and A = 112, and deadlines 25% and 50% of the
total operations. In all experiments, we have divided the dataset
into four mutually exclusive groups, and we ran our experiments on
all of them, we found that the results are similar. Thus, we reported
the results of one of those groups. Moreover, we did pick 10% for

Table 1: Experimental Parameters

Parameter Value(s) Parameter Value(s)
PCC τ [0.75, 0.90] w 8
A [112, 225, 450] # data streams 72
I 900 (180 seconds) # micro-batches 4

the X% Non-Correlated as a middle point between the strategies
Untouched and Alternating.

4.2 Experimental Results
In this section, we present the results of two experiments that we
conducted to evaluate the ability of the strategies to detect and
diversify in real-time the correlated pairs in data streams.

Experiment 1 (Figure 1) In this experiment, we studied the detection-
recall of each strategy with respect to a given deadline. We set the
deadline to be 25%, 50%, and 75% of the processing duration of each
interval and measured the percentage of the number of correlated
pairs each strategy was able to detect. We experimented with the
values of PCC τ andA, shown in Table 1. All experiments produced
similar results; due to limited space we report here only for the
deadline 25%, which is the most strict one.

In Figure 1, we show the percentage of detected correlated pairs
at the 25% deadline and with A=112. We notice that PriCe-DCS
with strategy 1% Probing outperformed the rest except in the 4th
micro-batch where the 5% Probing outperformed the rest. This
clearly indicates that inducing a little overhead and running round-
robin at the beginning of each micro-batch for certain number of
windows is the most effective way to initialize the utility function
when exploring micro-batches. This result is intuitive as we try to
determine at each beginning the behavior of the data streams in the
current interval. This way, we distinguish the pairs of data streams
that are correlated blindly without discrimination as opposed to,
for example Informed and Untouched, which use the history of the
preceding micro-batch.

Experiment 2 (Table 2) In this experiment, we studied the impact
of historical information on the effectiveness of detecting corre-
lated pairs. This includes the trade-off between exploration and
exploitation in the approach for detecting correlated pairs. We
use the metrics detection-recall, overlapping-recall, and diversity to
illustrate that impact.

In Table 2, we showed the results for the algorithm PriCe-DCS
with Blind strategy as a baseline. In addition, we showed the results
of PriCe-DCS with Informed and Untouched as the most exploitative
starting phase varieties. This means that they keep detecting the
same pairs of data streams that they already have detected. We also
showed the winners from Experiment 1 (i.e., 1% Probing and 5%
Probing).

We noticed that the X% Probing PriCe-DCS achieved the highest
detection-recall on average for both deadlines. This is expected due
to the early sampling of the exploration space. In addition, Informed
PriCe-DCS achieved the highest overlapping-recall on average in
the deadline 25%. This is also expected because Informed PriCe-DCS
does not alter the parameters of the utility function, instead, it

Strategies for Detection of Correlated Data Streams ExploreDB 2018 , June 15, 2018, Houston, TX, USA

0
10
20
30
40
50
60
70
80
90
100

1st 2nd 3rd 4th 1st 2nd 3rd 4th

τ	=	0.75 τ	=	0.90

%
	o
f	D

et
ec
te
d	
Co

rr
el
at
ed

	P
ai
rs

Micro	Batches

Blind Informed Untouched Alternating
10%	Non-Correlated Decaying	History Shared	Stream 1%	Probing
5%	Probing 10%	Probing 15%	Probing

Figure 1: The % of correlated pairs of streams detected by all starting phases at 25% of the interval I (the correlation criterion
A = 112).

carries all the information of pairs from previous micro-batches as
they are.

Finally, the explorative strategies (i.e., X% Probing and Blind)
achieved a higher diversity in detecting correlated pairs than the ex-
ploitative ones (i.e., Informed and Untouched). This can be explained
because the exploitative strategies have some kind of informative
approach on how to analyze the data streams, whether this is from
previous micro-batches or some other source. Thus, they will keep
exploring the pairs that were already correlated in previous micro-
batches.

Take Away: In our first experiment, we found that PriCe-DCS with
X% Probing is the best strategy for detecting correlated live data
streams. In the second experiment, we found that Informed and
Untouched strategies are more suitable for exploiting the space of
exploration, and for finding correlated pairs regardless of diversity.
However, X% Probing strategy do detect more diverse pairs across
micro-batches along the exploration process.

5 RELATEDWORK
The processing of data and fast discovery of correlated subse-
quences of time series is tackled in two scenarios with respect
to the production of data—dynamic, when the data is processed as
it is produced [2, 6, 10, 14, 16], and static, when the data is collected
upfront and it forms the search space for finding the correlated
subsequences [7, 11]. The latter is beyond the scope of our work.
In this section, we discuss the state-of-the-art of computationally
cheap identification of correlated data streams.

Detecting similarities between data streams can also be achieved
through correlation identification techniques. Four different dis-
tance measures for similarity of data streams were proposed in [10],
namely, “Autocorrelation Distance (ACD)”, “Markovian Distance
(MD)”, “Local Distance Distribution” and “Probabilistic Local Near-
est Neighbor”. ACD is the version of similarity metric used in our
work (PCC), but used for self-correlation, i.e., when a data stream
is correlated to itself, whereby one of the windows starts with a lag
from the other one. All discussed methods are used to find the first

nearest neighbor (1NN) of given data stream only. Our approach,
however, identifies all pairs of correlated data streams and is not
limited to 1NN only.

Anomaly detection over data streams can be used as a correlation
identification method. A solution is presented in [6] uses the MD
approach, listed above. Specifically, the presented solution relies on
a twofold approach, whereby data streams clustering is combined
with Markov chain modeling. The former identifies groups (or
clusters) of similar data streams. The latter conveys a possibility
for the system to identify anomalies in the data streams in each
cluster. In the context of the system, anomalies are considered to
be transitions in the Markov chains, which have probability below
a certain predefined threshold. Our work may not only be adjusted
to identify anomalies, whereby an anomaly is a pair of windows
with PCC below a certain threshold, but it also provides analysts
with insights about the data. This is done by employing cheap
incremental computations, avoiding computationally expensive
operations such as building Markovian transition matrices.

6 CONCLUSIONS
Our novel PriCe-DCS algorithm, previously proposed in our Detec-
tion of Correlated Streams (DCS) framework, combines (1) incre-
mental sliding-window computation of aggregates, (2) intelligent
scheduling, driven by a utility function, and (3) an exploration strat-
egy that tunes the utility function. In this paper, we presented a
number of exploration strategies that initialize/tune the utility func-
tion of PriCe-DCS differently in order to meet the exploration and
exploitation requirements of analysis tasks. We studied eight ex-
ploration strategies. The Informative and Untouched strategies that
address an exploitative objective use the result of the predeceasing
micro-batch analysis as part of the initialization of the analysis
within the current micro-batch. On the other hand, the strategies
that address explorative objectives (i.e., X% Probing) detected more
unique correlated data streams. We found out that PriCe-DCS, com-
bined with X% Probing outperformed the rest of the strategies in
terms of detection-recall.

ExploreDB 2018 , June 15, 2018, Houston, TX, USA Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis

Table 2: Results of Experiment 4

25% Deadline 50% Deadline
Batches 1st 2nd 3rd 4th Avg. 1st 2nd 3rd 4th Avg.

Total Correlated 429 580 236 234 – 429 580 236 234 –
Total Overlapped — 364 215 181 – — 364 215 181 –

PriCe Blind

Detected Correlated 203 253 127 115 – 337 452 192 194 –
Detected Overlapped — 110 87 75 – — 256 157 133 –

Unseen Before 203 143 40 40 – 337 196 35 61 –
Detection-Recall 0.473 0.436 0.538 0.491 0.485 0.786 0.779 0.814 0.829 0.802

Overlapping-Recall — 0.302 0.405 0.414 0.374 — 0.703 0.730 0.735 0.723
Diversity 1 0.565 0.315 0.348 0.557 1 0.434 0.182 0.314 0.483

PriCe Informed

Detected Correlated 203 197 135 124 – 337 402 205 199 –
Detected Overlapped — 193 135 118 – — 295 191 164 –

Unseen Before 203 4 0 6 – 337 107 14 35 –
Detection-Recall 0.473 0.340 0.572 0.530 0.479 0.786 0.693 0.869 0.850 0.800

Overlapping-Recall — 0.530 0.628 0.652 0.603 — 0.810 0.888 0.906 0.868
Diversity 1 0.020 0 0.048 0.267 1 0.266 0.068 0.176 0.378

PriCe Untouched

Detected Correlated 203 197 135 124 – 337 402 204 199 –
Detected Overlapped — 193 135 118 – — 295 190 164 –

Unseen Before 203 4 0 6 – 337 107 14 35 –
Detection-Recall 0.473 0.340 0.572 0.530 0.479 0.786 0.693 0.864 0.850 0.798

Overlapping-Recall — 0.530 0.628 0.652 0.603 — 0.810 0.884 0.906 0.867
Diversity 1 0.020 0 0.048 0.267 1 0.266 0.069 0.176 0.378

PriCe 1% Probing

Detected Correlated 276 298 166 145 – 356 447 219 197 –
Detected Overlapped — 167 119 104 – — 245 176 147 –

Unseen Before 276 131 47 41 – 356 202 43 50 –
Detection-Recall 0.643 0.514 0.703 0.620 0.620 0.830 0.771 0.928 0.842 0.843

Overlapping-Recall — 0.459 0.553 0.575 0.529 — 0.673 0.819 0.812 0.768
Diversity 1 0.440 0.283 0.283 0.502 1 0.452 0.196 0.254 0.476

PriCe 5% Probing

Detected Correlated 229 245 157 167 – 396 501 220 223 —
Detected Overlapped — 158 138 126 – — 326 195 169 —

Unseen Before 229 87 19 41 – 396 175 25 54 —
Detection-Recall 0.534 0.422 0.665 0.714 0.584 0.923 0.864 0.932 0.953 0.918

Overlapping-Recall — 0.434 0.642 0.696 0.591 — 0.896 0.907 0.934 0.912
Diversity 1 0.355 0.121 0.246 0.431 1 0.349 0.114 0.242 0.426

7 ACKNOWLEDGEMENT
We thank Alexandros Labrinidis and Mohamed Sharaf for their valuable
feedback on this publication, partially supported by NIH under Award
U01HL137159. The content is solely the responsibility of the authors.

REFERENCES
[1] Rakan Alseghayer, Daniel Petrov, Panos K. Chrysanthis, Mohamed Sharaf, and

Alexandros Labrinidis. 2017. Detection of Highly Correlated Live Data Streams
(BIRTE ’17). 3:1–3:8.

[2] Richard Cole, Dennis Shasha, and Xiaojian Zhao. 2005. Fast Window Correlations
over Uncooperative Time Series (KDD ’05). 743–749.

[3] Kaiyu Feng, Gao Cong, Sourav S. Bhowmick, Wen-Chih Peng, and Chunyan
Miao. 2016. Towards Best Region Search for Data Exploration (ACM SIGMOD’16).
1055–1070.

[4] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. 2015. Overview of
Data Exploration Techniques (ACM SIGMOD’15). 277–281.

[5] Yahoo Inc. 2016. Yahoo Finance Historical Data. (2016). https://finance.yahoo.
com/quote/YHOO/history

[6] Dimitrije Jankov, Sourav Sikdar, Rohan Mukherjee, Kia Teymourian, and Chris
Jermaine. 2017. Real-time High Performance Anomaly Detection over Data
Streams: Grand Challenge (DEBS ’17). 292–297.

[7] Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. 2014. Interactive Data
Exploration Using Semantic Windows (ACM SIGMOD’14). 505–516.

[8] Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. 2015. Searchlight: Enabling
Integrated Search and Exploration over Large Multidimensional Data. Proc. VLDB
Endow. 8, 10 (jun 2015), 1094–1105.

[9] Dongeun Lee, Alex Sim, Jaesik Choi, and Kesheng Wu. 2016. Novel Data Reduc-
tion Based on Statistical Similarity (SSDBM ’16). 21:1–21:12.

[10] Katsiaryna Mirylenka, Michele Dallachiesa, and Themis Palpanas. 2017. Data
Series Similarity Using Correlation-Aware Measures (SSDBM ’17). 11:1–11:12.

[11] Abdullah Mueen, Suman Nath, and Jie Liu. 2010. Fast Approximate Correlation
for Massive Time-series Data (ACM SIGMOD’10). 171–182.

[12] Mahsa Orang and Nematollaah Shiri. 2015. Improving Performance of Similarity
Measures for Uncertain Time series Using Preprocessing Techniques (SSDBM
’15). 31:1–31:12.

[13] Daniel Petrov, Rakan Alseghayer, Mohamed Sharaf, Panos K. Chrysanthis, and
Alexandros Labrinidis. 2017. Interactive Exploration of Correlated Time Series
(ExploreDB’17). 2:1–2:6.

[14] Ilari Shafer, Kai Ren, Vishnu Naresh Boddeti, Yoshihisa Abe, Gregory R. Ganger,
and Christos Faloutsos. 2012. RainMon: An Integrated Approach to Mining
Bursty Timeseries Monitoring Data (ACM KDD ’12). 1158–1166.

[15] Eleni Tzirita Zacharatou, Farhan Tauheedz, Thomas Heinis, and Anastasia Aila-
maki. 2015. RUBIK: Efficient Threshold Queries on Massive Time series (SSDBM
’15). 18:1–18:12.

[16] Yunyue Zhu and Dennis Shasha. 2002. StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time (VLDB ’02). 358–369.

[17] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for
Interactive Exploration of Big Data series (ACM SIGMOD’14). 1555–1566.

https://finance.yahoo.com/quote/YHOO/history
https://finance.yahoo.com/quote/YHOO/history

	Abstract
	1 Introduction
	2 DCS Framework
	2.1 System Model
	2.2 Optimization Objective
	2.3 Base Algorithm

	3 Detection Strategies
	4 Experiments and Analysis
	4.1 Experimental Framework
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	7 Acknowledgement
	References

