
Interactive Exploration of Correlated Time Series
Daniel Petrov, Rakan Alseghayer, Mohamed Sharaf*, Panos K. Chrysanthis, Alexandros Labrinidis

Dept. of Computer Science, University of Pi�sburgh, Pitsburgh, PA, USA
*University of �eensland, Brisbane, Australia

dpetrov,ralseghayer,panos,labrinid@cs.pi�.edu,*m.sharaf@uq.edu.au

ABSTRACT
�e rapid growth of monitoring applications has led to unprece-
dented amounts of generated time series data. Data analysts typ-
ically explore such large volumes of time series data looking for
valuable insights. One such insight is �nding pairs of time series, in
which subsequences of values exhibit certain levels of correlation.
However, since exploratory queries tend to be initially vague and
imprecise, an analyst will typically use the results of one query as
a springboard to formulating a new one, in which the correlation
speci�cations are further re�ned. As such, it is essential to pro-
vide analysts with quick initial results to their exploratory queries,
which allows for speeding up the re�nement process. �is goal is
challenging when exploring the correlation in a large search space
that consists of a big number of long time series. In this work we
propose search algorithms that address precisely that challenge.
�e main idea underlying our work is to design priority-based
search algorithms that e�ciently navigate the rather large space
to quickly �nd the initial results of an exploratory query. Our ex-
perimental results show that our algorithms outperform existing
ones and enable high degree of interactivity in exploring large time
series data.

CCS CONCEPTS
•Information systems→Information retrieval; Users and in-
teractive retrieval; Personalization;

KEYWORDS
time series, data exploration, search, subsequence
ACM Reference format:
Daniel Petrov, Rakan Alseghayer, Mohamed Sharaf*, Panos K. Chrysanthis,
Alexandros Labrinidis. 2017. Interactive Exploration of Correlated Time
Series. In Proceedings of ExploreDB’17, Chicago, IL, USA, May 14-19, 2017,
6 pages.
DOI: h�p://dx.doi.org/10.1145/3077331.3077335

1 INTRODUCTION
In recent years, more and more individuals and companies are col-
lecting data on natural phenomena, social and socio-technological
processes over time in order to quantify them and also to study how
they change over time. Applications, which produce and deal with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ExploreDB’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-4674-0/17/05. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3077331.3077335

such data are medical data [9], location-based services [2], wireless
sensor networks, [1, 3, 15, 16] and �nances [6] – to name a few.
A common method to get a be�er understanding of the observed
behavior conveyed in these datasets is to �nd correlations in the
time series data [5]. �e correlation can be also used as a source to
manipulate the data further like �nding similarity measures faster
[11], running threshold queries, [17] or reducing the size of the
data, yet preserving some of its characteristics [8].

Finding correlations in time series (TS) data is a challenging task.
Traversing the data and calculating the correlation is computation-
ally expensive and introduces signi�cant delay in the production
of results. One way to address the challenge is among the lines of
navigating the search space [5]. An alternative approach is to index
the time series data [4, 5, 7, 18]. Predominantly the users look for
pairs of highly correlated TS, and a high number of TS implies an
even bigger number of pairs to be compared – precisely n∗(n−1)

2
pairs for n TS. O�en TS data consists of a big number of very long
TS, that would not all �t into memory.

�e big number of long TS further complicates data exploration
where an analyst is interested in using the results of one query as a
springboard to formulating new queries, in which the correlation
speci�cations are further re�ned. In order to support data explo-
ration, it is essential to provide analysts with quick initial results to
their exploratory queries, which allows for speeding up the re�ne-
ment process. In other words, there is a need for algorithms that (1)
quickly identify subsequences of highly correlated time series data
and (2) provide results within an interactive time frame. Existing
work has primarily addressed the former [12, 13], which was mainly
focused on correlating semi-�nite TS. �ese current approaches for
identifying pairs of correlated time series are designed to produce a
full set of results before presenting it to the user. �us, all of them
fall short of supporting interactive exploration, which imposes an
upper bound on the time needed to present the �rst results and
returns results incrementally. �ese works are in the time domain,
i.e., working with the raw time-ordered data.

In this paper, we address the la�er, an interactive framework in
the time domain, which continuously and incrementally provides
results to the user. To the best of our knowledge, there is no such
system, which identi�es correlated TS and provides incremental
results within an interactive time frame with accuracy of 100%
while exploring the data space. Our solution is based on the use of
the Pearson Correlation Coe�cient (PCC) as a metric of correlation
of two subsequences of time series data and on the hypothesis that
interactivity can be achieved by integrating caching and scheduling
principles.

In this paper we make the following contributions:
• We formulate the problem of pairwise correlation of time

series data, which produces results in interactive amount
of time (Sec. 2).

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA D. Petrov et al.

• We propose two primary algorithms. Our baseline one
(iBRAID) explores the pairs in round robin fashion. Our
�agship algorithm (PriCe) utilizes a priority function based
on historical success rate, cost, and PCC (Sec. 3).

• We present an experimental evaluation framework, which
implements iBRAID and eight di�erent variations of PriCe.
Our experimental results using a real dataset show a speedup
of up to 1500% of PriCe compared to iBRAID (Sec. 4).

2 PROBLEM DEFINITION
Without loss of generality, we consider the complete dataset to be
available upfront, data to be numeric, all dimensions to be synchro-
nized – i.e., the next timestamp of all of them is received by the
system at the same point in time, all time series start at the same
point in time, there are no missing timestamps, and all time series
are of the same length.

We adopt the widely used Pearson correlation coe�cient (PCC)
as a measure of correlation between a pair of time series. Given two
numeric time series x andy of equal lengthm, the PCC is calculated
with the following formula:

corr (x ,y) =
m∑
i=1

(xi − µx) (yi − µy)

σxσy
(1)

where µx is the average (or mean) of the values of x , µy is the mean
of the values of y, σx and σy are the standard deviations of the
values of x and y, respectively.

PROBLEM (Interactive Pairwise Correlation (IPC)): Let T be a
multidimensional time series of data. Let x and y be dimensions in
T . IPC �nds all pairs of subsequences of time series x and y, which
start at the same point in time and have equal length s , for which
corr (x ,y) > τ and delivers every matched pair as it is detected.

GOAL: �e objective of IPC is to minimize the time to deliver
the �rst r% of the results, where r is a relatively small number. �e
equivalent SQL IPC query is:

SELECT x, y
FROM T
WHERE corr (x ,y) > τ AND SubsequenceLenдth = s
FETCH FIRST r% ROWS ONLY;

3 ALGORITHMS
In this section, we address the interactivity shortcoming of the
current approaches, propose iBRAID, which is a baseline algorithm,
and introduce PriCe for interactive pairwise correlation of subse-
quences of time series data.

3.1 Naive Approach
�e most obvious approach to �nd and report correlated subse-
quences in a TS dataset is to start with a single pair of time series,
pick subsequences of them, which start at the same point in time
and calculate the Pearson Correlation Coe�cient (PCC) for them.
Subsequently, continue the PCC calculations for other subsequences
of the same pair of time series, or move to calculate the PCC for the
corresponding subsequences of other pairs of time series until all
possible pairs of subsequences in TS dataset are examined. Finally,
return all pairs of subsequences whose PCC meets a threshold τ .

�e major cost of the naive approach is in computing the PCC for
each pair of subsequences, which requires at least two traversals of
the values in these subsequences (Eq. 1). �e �rst one is to calculate
the average (or mean) of each subsequence. �e second one is
to calculate the standard deviation and the inner cross product
of the two subsequences. �e total number of traversals for each
subsequence is in the orders of magnitude of the length of the
subsequence, multiplied by the number of pairs it is part of. �e
naive approach illustrates the crux of the IPC problem, which is
the high number of calculations required to explore the dataset.

3.2 iBRAID
�e BRAID technique [13] partially solved the problem of the naive
approach by e�ciently calculating the PCC based on �ve basic
and computationally cheap statistics: the sum of the elements in
each subsequence, the sum of the squares of the elements of each
subsequence, and the inner crossproduct of the elements of the two
sub sequences for which the correlation is calculated.

�e following notation is adopted for the rest of the paper. �e
sum of the elements of a subsequence of length m of time series x
is denoted

sumx =
m∑
i=1

xi

�e same way, the sum of the square of the elements is denoted

sumxx =
m∑
i=1

x2
i

�e inner product will be denoted

sumprodxy =
m∑
i=1

xiyi

�e covariance of the two time series x and y is

cov = sumprodxy −
sumx × sumy

m

�e variance of the subsequence can be calculated according to the
following formula

varx = sumxx −
(sumx)2

m

Similarly, the variance for time series y will be denoted vary. �en
the PCC can be calculated byapplying the following formula

corr (x ,y) =
cov

√
varx ×vary

�e essential statistics can be computed either at once or incre-
mentally, each time a pair of subsequences gets explored. In the
case of incremental calculation, the sums that are stored in memory
are incremented by the new values added and decremented by the
values that are not part of the subsequences anymore. �e same
operations are done for the sums of the squares and the inner cross
products using the respective values.

As we discussed earlier, the naive approach is to arbitrarily select
two time series, calculate the correlation for a pair of subsequences,
explore it by one value, and recalculate the correlation until the
end of the time series is reached. �e next step is to arbitrarily
pick di�erent pairs of time series and run the same algorithm. �is
should be done until all pairs are explored. �is algorithm does

Interactive Exploration of Correlated Time Series ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

not have any prior knowledge about the data and does not use any
results as a decision making input to speed up the production of
results. Additionally, each value in each time series is touched as
many times as are the di�erent pairs of time series in the dataset.
�is makes the computation cost of the algorithm prohibitively
expensive.

We propose a computationally cheaper algorithm, which pro-
duces the same results as the naive one but with fewer computations
and returns the results as soon as they are produced. We explore
the dataset sequentially, starting from the �rst value for all time
series. We calculate the essential statistics for each subsequence
of each time series and the inner cross product of pairs of time
series. �e next step is to calculate the correlations for all pairs
of subsequences, starting from the �rst value. Once this is done,
the subsequences are explored further by one value, the essential
statistics are updated incrementally - the �rst value is expired /
subtracted from them and the new value is added. �e Pearson
Correlation is calculated again for all pairs. �e rest of the steps
are to keep exploring all time series by a single value, augment the
essential statistics incrementally, and recalculate the correlation.
�ese steps are repeated until the whole dataset is explored.

We named the algorithm “iBRAID”, paying tribute to the authors
of BRAID [13] and emphasizing its focus on producing results
in interactive amount of time. �e algorithm has a number of
advantages: it is accurate, easy to implement, and does not cause
“starvation” among the pairs. In other words, all pairs are considered
(i.e., new values are included and old values are excluded) at each
step. Additionally, it reduces the amount of computations by half
due to the usage of the �ve essential statistics. �is algorithm
is expected to perform well for datasets whose data is uniformly
distributed. On the other hand, it might underperform on skewed
datasets. �is hypothesis has motivated our second technique,
which is discussed next.

3.3 PriCe
By reusing partial PCC computations, iBRAID captures one part
of our hypothesis, that interactivity can be achieved by utilizing
caching and scheduling principles. In this section, we propose a
novel algorithm that captures both.

PriCe is a more informed searching algorithm; it uses a priority
function to explore the pairs of subsequences while reusing partial
PCC computations as iBRAID. �e idea of PriCe is to explore the
most promising pair �rst, which is the one with the highest priority
function value. We designed the following priority function:

PCC ∗ (M/totalExp)/C (2)

where PCC is the most recent calculated correlation for a pair of
subsequences that belong to the same pair of time series, M is
the number of produced results that match the query (i.e., pair
of subsequences) by a pair of time series so far, totalExp is the
total number of explored pair of subsequences, and C is the cost of
exploring a pair of subsequences.

PriCe gives the highest priority to the pair of time series that have
a history of high number of results produced so far and high recent
calculated PCC. �is way, we capture the idea of space locality
along with temporal locality: where space locality is captured by
the PCC, and temporal locality is captured by the ratio of the results

Table 1: PriCe and its variations

Abbreviation Name
PriCe M Ratio [P | NP]∗ Original PriCe

PriCe M [P | NP] PriCe with only num. of results
PriCe C [P | NP] PriCe with PCC/C

PriCe [P | NP] PriCe with PCC only
∗[P | NP] = [Preemptive | Non-preemptive]

to the total number of explored pairs of subsequences. Moreover, we
include the cost to explore a pair of subsequences into the function.

�e cost in the priority function is the number of operations
needed to calculate the essential statistics for a pair of subsequences.
For example, if a pair of time series shares one time series with
another pair. �en, the more advanced one (i.e., the one that is at a
higher timestamp) has already calculated the sums of the time series
and the sums of the squares. �is leaves the pair that is lagging
behind with lower cost to advance, since the more advanced one
has already computed some of the essential statistics for that shared
time series.

PriCe has two modes of execution: preemptive and non-preemptive.
In the non-preemptive mode, if the algorithm declares a pair of
subsequences as a result a�er exploring it (i.e., the calculated PCC
is above τ), it further continues exploring the next pair of subse-
quences of that pair of time series. By doing that, we try to leverage
the space locality of a result. �e algorithm ceases to explore that
pair of time series when it encounters the very �rst pair of subse-
quences that does not count as a result (i.e., the calculated PCC is
below or equal τ). A�er that, it reevaluates the priority function,
and elects the next pair to explore accordingly. On the other hand,
the preemptive mode would consult the priority function a�er each
single exploration of any pair of subsequences, irrespective of the
calculated PCC.

4 EXPERIMENTS AND ANALYSIS
In this section we present initial results from the evaluation of
our proposed algorithms. In addition to the comparison between
iBRAID and PriCe, we study the signi�cance of each parameter of
the priority function of PriCe (Eq. 2).

4.1 Experimental Framework
Algorithms In addition to iBRAID and PriCe, we generated three
variants of PriCe by se�ing some of the parameters of its priority
function (Eq. 2) to 1. All variations are summarized in Table 1. �e
�rst variation of the priority function is PCC/C (i.e., M/totalExp=
1). �is variation is denoted as PriCe C, which is less informed than
the original PriCe (denoted as PriCe M Ratio). Similarly, we have
come up with a second variation denoted as Price M, where the cost
is only the number of results produced so far M (i.e., totalExp =1
andC=1). Price M is also less informed compared to PriCe M Ratio,
as it does not take into consideration the cost to explore the pair C
nor the total number of explored subsequences so far totalExp. �e
third variation is the simplest, and it has the priority function PCC .
�is variation is denoted as PriCe. �is means that the algorithm
will elect the pair of time series that have the highest PCC for the
most recently explored pair of subsequences. �e downside of this

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA D. Petrov et al.

scheme is that it does not account for the cost to explore the pair
of subsequences, which a�ects the interactivity of the algorithm.
Also, it lacks foresight, as it fails to capture the number of results a
pair of time series has produced so far.
Testbed We implemented all the discussed algorithms and their
variations in both Java 1.8 and in C++ 11. We ran the experiments
on a computer with 2 Intel CPUs, running at 2.66GHz, and 96GB of
RAM memory. �e operating system used was CentOS 6.5 and the
compiler was GCC version 4.8.2.
Metrics We evaluated the performance of the algorithms in terms
of both response time and memory footprint.

Response time: We measured the latency in both the number of
operations performed to reach the �rst r% of the results (i.e., pairs
of subsequences) and wall clock time needed to reach the �rst r% of
the results. We used the number of operations as it provides the
asymptotic e�ciency of the algorithms compared to one another.
�is does not depend on factors such as the hardware characteristics
and the operating system of the computer, which the experiments
are run on, nor the e�ciency of the compiler / virtual machine,
which compiles and/or executes the code. At the same time, we use
the wall clock time to measure the impact of such dependencies in
the runtime environment mentioned above.

Memory footprint: We measured the number of values of the �ve
essential statistics, stored in memory for each pair of subsequences.
DatasetYahoo Finance Historical Data [6]: �e dataset we have used
in our experiments consists of 318 time series. �ose re�ect the
trading of 56 companies on the NYSE for the last 28 years. �is gives
us a total of 50403 di�erent pairs to query. �e data granularity
is a day, which includes the price of the stock of the company at
opening, the price at the end of the day (closing), the highest price
for the day, the lowest price for the day, the amount of shares
traded that day, and the adjusted close (calculated according to the
standards of the CRSP, Center for Research in Security Prices). �e
length of each time series is about 7100 timestamps.

4.2 Experimental Results
Our objective has been to get as many results as possible while
maintaining interactivity. In this section, we present the results of
four experiments that we conducted to evaluate the interactivity
and the sensitivity of our proposed algorithms to the length of
subsequences and the target correlation threshold. Recall that all
variations of PriCe and their names in the �gures are summarized
in Table 1.
Experiment 1: In our �rst experiment, we measured the latency
of each algorithm to produce the �rst 1%, 5%, 10% and 20% of the
results, measured with our �rst metric of response time, i.e., number
of operations (Fig. 1) as well as the memory footprint, measured
as number of (cached) values in memory (Fig. 2). �e target cor-
relation threshold for this experiment is 0.9 and the subsequence
length is set to 64 timestamps. All 8 variations of PriCe outper-
form the baseline algorithm iBRAID. Most of PriCe variations have
comparable performance. Our �agship algorithm PriCe M Ratio [P]
requires only 0.06634 of the operations performed by the baseline
to produce the �rst 20% of the results – 34076581 vs 927230124. �is
is a speed-up of more than 15 times.

0

100

200

300

400

500

600

700

800

900

1000

1% 5% 10% 20%

#	
of
	o
pe

ra
tio

ns
	(i
n	
m
ln
)

%r	Results

iBRAID PriCe	P PriCe	C	P
PriCe	NP PriCe	M	NP PriCe	M	P
PriCe	C	NP PriCe	M	Ratio	P PriCe	M	Ratio	NP

Figure 1: �e cost in number of operations to deliver the �rst
1%, 5%, 10%, and 20% of the results.

0

0.5

1

1.5

2

2.5

3

3.5

1% 5% 10% 20%

#	
of
	v
al
ue

s	i
n	
m
em

or
y	
(in

	m
ln
)

%r	Results

iBRAID PriCe	P PriCe	C	P
PriCe	NP PriCe	M	NP PriCe	M	P
PriCe	C	NP PriCe	M	Ratio	P PriCe	M	Ratio	NP

Figure 2: �ememory footprint for each algorithm at 1%, 5%,
10%, and 20% of the results.

�e rate at which the memory cost increases for PriCe is signif-
icantly faster than the baseline iBRAID. iBRAID occupies a �xed
amount of memory, as all pairs get explored together, and the over-
head of essential statistics is minimized. It is not a surprise that
PriCe M Ratio [P] has a bigger memory footprint than iBRAID, but
it outperforms the other three variations of the PriCe algorithm.

Experiment 2: In our second experiment, we studied the sensi-
tivity of the algorithms to the length of the subsequence. We set
the target threshold to be 0.9, and then, measured the cost and the
memory footprint to produce the �rst 20% of the results. We ran the
algorithms for 6 di�erent lengths of the subsequences – 8, 16, 32,
64, 128, and 256 (Fig. 3). PriCe M Ratio [P] consistently outperforms
all the algorithms for subsequence length of 32 or more timestamps,
and it shows comparable results with the other variations of PriCe
for shorter subsequences (30 M). �e baseline algorithm exhibits
between 2 and 15 times higher cost compared to PriCe M Ratio [P]
– between 400 M and 600 M

Similarly to the previous experiment, iBRAID has the smallest
memory footprint. PriCe M Ratio [P] has comparable footprint to
PriCe [P] and smaller than PriCe [NP] and PriCe M [P] (Fig. 4).

Experiment 3: In our third experiment, we studied the sensitivity
of our algorithms to the target threshold. We set the subsequence
length to 64 timestamps, and we ran it for 9 di�erent values of τ –
0.1,0.2, ...,0.9. �e statistics are for the �rst 20% of the results (Fig.

Interactive Exploration of Correlated Time Series ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

0

100

200

300

400

500

600

700

8 16 32 64 128 256

#	
of
	o
pe

ra
tio

ns
	(i
n	
m
ln
)

Subsequence	length

iBRAID PriCe	P PriCe	C	P
PriCe	NP PriCe	M	NP PriCe	M	P
PriCe	C	NP PriCe	M	Ratio	P PriCe	M	Ratio	NP

Figure 3: �e cost in number of operations to deliver the �rst
20% of the results.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

8 16 32 64 128 256

#	
of
	v
al
ue

s	i
n	
m
em

or
y	
(in

	m
ln
)

Subsequence	length

iBRAID PriCe	P PriCe	C	P
PriCe	NP PriCe	M	NP PriCe	M	P
PriCe	C	NP PriCe	M	Ratio	P PriCe	M	Ratio	NP

Figure 4: �ememory footprint for each algorithm at 1%, 5%,
10%, and 20% of the results.

5). Our �agship algorithm PriCe M Ratio [P] exhibits the smallest
cost for all values of the target threshold in comparison with the
other algorithms. For the highest target correlation 0.9, out �agship
algorithm shows a be�er performance by 15 times, as discussed
earlier in Experiment 1.

�e memory footprint of PriCe M Ratio [P] is signi�cantly larger
than the baseline algorithm iBRAID. �is is expected, as the di�erent
time series are not explored together, which requires a number of
statistics to be (cached) in memory. Our �agship requires less
memory than two of the other algorithms and has comparable
results with four of the variations of PriCe (Fig 6).

Experiment 4: In our last experiment, we studied the overhead of
running our algorithms in a given environment. For this purpose,
in this experiment we measure the latency of each algorithm using
our second metric for response time - namely wall clock time.

For consistency, in this experiment, we reuse the setup of Exper-
iment 1 – the subsequence length is set to 64, the target threshold
correlation is 0.9 and we measure the response time to produce the
�rst 1%, 5%, 10% and 20% of the results.

We ran the experiment for a subset of the dataset - only 2 compa-
nies, which corresponds to 12 time series. Figure 7 shows the results
for our implementation in C++. �e results for our implementation
in Java are similar even though the performance gap between PriCe
M Ratio [P] and the baseline iBRAID is larger.

0

100

200

300

400

500

600

700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#	
of
	o
pe

ra
tio

ns
	(i
n	
m
ln
)

Target	correlation

iBRAID PriCe	P PriCe	C	P
PriCe	NP PriCe	M	NP PriCe	M	P
PriCe	C	NP PriCe	M	Ratio	P PriCe	M	Ratio	NP

Figure 5: �e cost in number of operations to deliver the �rst
20% of the results.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#	
of
	v
al
ue

s	i
n	
m
em

or
y	
(in

	m
ln
)

Target	correlation

iBRAID PriCe	P PriCe	C	P
PriCe	NP PriCe	M	NP PriCe	M	P
PriCe	C	NP PriCe	M	Ratio	P PriCe	M	Ratio	NP

Figure 6: �e memory footprint for each algorithm at 20%
of the results.

In Figure 7, the wall clock metric shows a di�erence of only 1.5
times between PriCe M Ratio [P] and iBRAID, despite the signi�cant
di�erence in terms of number of operations – 15 times. �e former
took 871666 msec to deliver the �rst 20% of the results; the la�er
took 1221845 msec to achieve the same task. �is clearly shows that
despite the improvements in computing PCC, the context switch to
compute the priority function and movement of data from memory
to the CPU is signi�cant. As part of our future work, we plan
to investigate ways to reduce this overhead. �is experiment also
shows that despite the signi�cant overheads to compute the priority
function, PriCe M Ratio [P] outperforms iBRAID.

�e performance of the rest of the PriCe variations is comparable
to PriCe M Ratio [P] and they all outperform iBRAID. We ran the
experiment for subsequence length 8,16,32,128 and 256 as well, and
we got similar results. In all cases, PriCe M Ratio [P] consistently
performs be�er than iBRAID.

5 RELATEDWORK
�e processing of data and fast discovery of highly correlated sub-
sequences of time series (TS) is tackled in two scenarios with re-
spect to the production of data – static, when the data is collected
upfront and it forms the search space for �nding the correlated
subsequences [7, 10, 13], and dynamic, when the data is processed
as it is produced – the scenario of datastreams [12, 14]. �e la�er

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA D. Petrov et al.

0

200000

400000

600000

800000

1000000

1200000

1400000

1% 5% 10% 20%

Ti
m
e	
(m

se
c)

r%	Results

iBRAID PriCe	P PriCe	C	P
PriCe	NP PriCe	M	NP PriCe	M	P
PriCe	C	NP PriCe	M	Ratio	P PriCe	M	Ratio	NP

Figure 7: Wall clock time (C++)

is beyond the scope of our work. Also, works on approximate solu-
tions and ones that use techniques in the frequency domain (e.g.,
[10]) are beyond the scope of this paper.

In BRAID [13] the authors propose a technique to �nd correlated
pairs of subsequences. �eir work extends to the point that the
two subsequences might not start at the same point in time - there
might be a lag between them - i.e. the subsequences are of the
same length, but one of them starts l timestamps a�er the other
one. �ey navigate the data space sequentially and preemptively.
�ey calculate the PCC of each pair of subsequences with lag 0
as they navigate the space and use these values to average out (or
“smoothen”) the PCC for larger lags. �e authors use powers of
2 in order to build a multilevel “smoothened” PCC as a geomet-
ric progression of the lag. Our work can be extended to support
lagged pairs of subsequences at the cost of keeping in memory
the essential statistics from the timestamps at which each of the
subsequences starts. Our work also di�ers from BRAID as we focus
on interactive exploration of the correlated subsequences and our
results are always 100% accurate as we do not estimate the PCC and
our algorithms always �nd all pairs of correlated subsequences.

�e authors of [7] propose an extension to SQL, which allows the
de�nition of new types of queries. �ose cannot be expressed easily
with the traditional operators such as GROUPBY and COUNT –
queries, which run arithmetic operators over ranges of data entries.
�ey also propose a sampling-guided, data-driven search space
navigation technique for interactive data exploration. �ey build a
grid over the search space and calculate a number of a�ributes for
each cell of the space. In their example, they use the SDSS dataset,
and the a�ributes they calculate for each cell are, for example,
average brightness of the cell and the number of stars in the cell.
�ese a�ributes are precomputed o�ine. �ey use a best-�rst
heuristic and a priority queue to navigate the order of exploration of
the cells. �e algorithms we propose also prioritize the exploration
of pairs of subsequences, which are more likely to produce results.
Unlike [7], we use the smallest step possible for advancement of the
subsequences - one timestamp. �e granularity of the grid might
impact signi�cantly the search space navigation. We also do not
precompute any data.

6 CONCLUSIONS
In this paper we presented a number of priority-based search al-
gorithms for interactive exploration of correlated time series (TS).
Our work aims to assist analysts in �nding pairs of TS, in which
subsequences of values exhibit certain levels of correlation. Pro-
viding initial results to the user in interactive fashion helps her to
re�ne further her exploratory queries, which allows for speeding up
the re�nement process. Our solution uses the Pearson Correlation
Coe�cient (PCC) as a metric of correlation of two subsequences of
time series, and it is trivial to extend it to negative correlation and
self correlation as we consider the absolute value of the PCC, and
we are not limited to one subsequence per time series.

Our experimental evaluation using real data shows that our
�agship algorithm outperforms the baseline approach by more
than 1500%. �is is a�ributed to our algorithm using a priority
function that accounts for PCC and considering the computation
cost, the number of results that are produced by a pair of TS, and
the total number of explored pairs of subsequences at any given
point in time.

Acknowledgments. We would like to thank the anonymous
referees for their helpful comments and suggestions for improving
this paper.

REFERENCES
[1] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. 2003. Evaluating

Probabilistic �eries over Imprecise Data ACM SIGMOD’03, 551–562.
[2] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. 2004. �erying imprecise data

in moving object environments. IEEE Transactions on Knowledge and Data
Engineering 16(9):1112–1127.

[3] Michele Dallachiesa, Gabriela Jacques-Silva, Buğra Gedik, Kun-Lung Wu, and
�emis Palpanas. 2015. Sliding Windows over Uncertain Data Streams. Knowl-
edge and Information Systems 45(1):159–190.

[4] Kaiyu Feng, Gao Cong, Sourav S. Bhowmick, Wen-Chih Peng, and Chunyan
Miao. 2016. Towards Best Region Search for Data Exploration ACM SIGMOD’16,
1055–1070.

[5] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. 2015. Overview of
Data Exploration Techniques ACM SIGMOD’15, 277–281.

[6] Yahoo Inc. 2016. Yahoo Finance Historical Data. 2016, h�ps://�nance.yahoo.
com/quote/YHOO/history

[7] Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. 2014. Interactive Data
Exploration Using Semantic Windows ACM SIGMOD’14, 505–516.

[8] Dongeun Lee, Alex Sim, Jaesik Choi, and Kesheng Wu. 2016. Novel Data Reduc-
tion Based on Statistical Similarity SSDBM ’16, 21:1–21:12.

[9] X. Lian, L. Chen, and J. X. Yu. 2008. Pa�ern Matching over Cloaked Time series
IEEE ICDE’08, 1462–1464.

[10] Abdullah Mueen, Suman Nath, and Jie Liu. 2010. Fast Approximate Correlation
for Massive Time-series Data ACM SIGMOD’10, 171–182.

[11] Mahsa Orang and Nematollaah Shiri. 2015. Improving Performance of Similarity
Measures for Uncertain Time series Using Preprocessing Techniques SSDBM ’15,
31:1–31:12.

[12] Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. 2005. Streaming
Pa�ern Discovery in Multiple Time-series VLDB ’05, 697–708.

[13] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. 2005. BRAID:
Stream Mining �rough Group Lag Correlations ACM SIGMOD’05, 599–610.

[14] Ilari Shafer, Kai Ren, Vishnu Naresh Boddeti, Yoshihisa Abe, Gregory R. Ganger,
and Christos Faloutsos. 2012. RainMon: An Integrated Approach to Mining
Bursty Timeseries Monitoring Data ACM KDD ’12, 1158–1166.

[15] Emma M. Stewart, Anna Liao, and Ciaran Roberts. 2016. Open PMU: A Real
World Reference Distribution Micro-phasor Measurement Unit Data Set for
Research and Application Development. 10/2016 2016,

[16] G. Trajcevski, A. Choudhary, O. Wolfson, L. Ye, and G. Li. 2010. Uncertain Range
�eries for Necklaces IEEE MDM’10, 199–208.

[17] Eleni Tzirita Zacharatou, Farhan Tauheedz, �omas Heinis, and Anastasia Aila-
maki. 2015. RUBIK: E�cient �reshold �eries on Massive Time series SSDBM
’15, 18:1–18:12.

[18] Kostas Zoumpatianos, Stratos Idreos, and �emis Palpanas. 2014. Indexing for
Interactive Exploration of Big Data series ACM SIGMOD’14, 1555–1566.

https://finance.yahoo.com/quote/YHOO/history
https://finance.yahoo.com/quote/YHOO/history

	Abstract
	1 Introduction
	2 Problem Definition
	3 Algorithms
	3.1 Naive Approach
	3.2 iBRAID
	3.3 PriCe

	4 Experiments and Analysis
	4.1 Experimental Framework
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

